Когда была создана аналитическая машина
Antigraviynaya.ru

Ремонт автомобилей

Когда была создана аналитическая машина

Когда была создана аналитическая машина

Несмотря на неудачу с разностной машиной, Бэббидж в 1834 году задумался о создании программируемой вычислительной машины, которую он назвал аналитической (прообраз современного компьютера). В отличие от разностной машины, аналитическая машина позволяла решать более широкий ряд задач. Именно эта машина стала делом его жизни и принесла посмертную славу. Он предполагал, что построение новой машины потребует меньше времени и средств, чем доработка разностной машины, так как она должна была состоять из более простых механических элементов. С 1834 года Бэббидж начал проектировать аналитическую машину.

Архитектура современного компьютера во многом схожа с архитектурой аналитической машины. В аналитической машине Бэббидж предусмотрел следующие части: склад (store), фабрика или мельница (mill), управляющий элемент (control) и устройства ввода-вывода информации.

Склад предназначался для хранения как значений переменных, с которыми производятся операции, так и результатов операций. В современной терминологии это называется памятью.

Мельница (арифметико-логическое устройство, часть современного процессора) должна была производить операции над переменными, а также хранить в регистрах значение переменных, с которыми в данный момент осуществляет операцию.

Третье устройство, которому Бэббидж не дал названия, осуществляло управление последовательностью операций, помещением переменных в склад и извлечением их из склада, а также выводом результатов. Оно считывало последовательность операций и переменные с перфокарт. Перфокарты были двух видов: операционные карты и карты переменных. Из операционных карт можно было составить библиотеку функций. Кроме того, по замыслу Бэббиджа, Аналитическая машина должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования.

Для создания компьютера в современном понимании оставалось лишь придумать схему с хранимой программой, что было сделано 100 лет спустя Эккертом, Мочли и Фон Нейманом.

Бэббидж разрабатывал конструкцию аналитической машины в одиночку. Он часто посещал промышленные выставки, где были представлены различные новинки науки и техники. Именно там состоялось его знакомство с Адой Августой Лавлейс (дочерью Джорджа Байрона), которая стала его очень близким другом, помощником и единственным единомышленником. В 1840 году Бэббидж ездил по приглашению итальянских математиков в Турин, где читал лекции о своей машине. Луиджи Менабреа, преподаватель туринской артиллерийской академии, создал и опубликовал конспект лекций на французском языке. Позже Ада Лавлейс перевела эти лекции на английский язык, дополнив их комментариями по объёму превосходящими исходный текст. В комментариях Ада сделала описание ЦВМ и инструкции по программированию к ней. Это были первые в мире программы. Именно поэтому Аду Лавлейс справедливо называют первым программистом. Однако, аналитическая машина так и не была закончена. Вот, что писал Бэббидж в 1851 году: «Все разработки, связанные с Аналитической машиной, выполнены за мой счёт. Я провёл целый ряд экспериментов и дошёл до черты, за которой моих возможностей не хватает. В связи с этим я вынужден отказаться от дальнейшей работы». Несмотря на то, что Бэббидж подробно описал конструкцию аналитической машины и принципы её работы, она так и не была построена при его жизни. Причин этому было много. Но основными стали полное отсутствие финансирования проекта по созданию аналитической машины и низкий уровень технологий того времени. Бэббидж не стал в этот раз просить помощи у правительства, так как понимал, что после неудачи с разностной машиной ему всё равно откажут.

Только после смерти Чарльза Бэббиджа его сын, Генри Бэббидж, продолжил начатое отцом дело. В 1888 году Генри сумел построить по чертежам отца центральный узел аналитической машины. А в 1906 году Генри совместно с фирмой Монро построил действующую модель аналитической машины, включающую арифметическое устройство и устройство для печатания результатов. Машина Бэббиджа оказалась работоспособной, но Чарльз не дожил до этих дней.

В 1864 году Чарльз Бэббидж написал: «Пройдёт, вероятно, полстолетия, прежде чем люди убедятся, что без тех средств, которые я оставляю после себя, нельзя будет обойтись». В своём предположении он ошибся на 30 лет. Только через 80 лет после этого высказывания была построена машина МАРК-I, которую назвали «осуществлённой мечтой Бэббиджа». Архитектура МАРК-I была очень схожа с архитектурой аналитической машины. Говард Айкен на самом деле серьёзно изучал публикации Бэббиджа и Ады Лавлейс перед созданием своей машины, причём его машина идеологически незначительно ушла вперёд по сравнению с недостроенной аналитической машиной. Производительность МАРК-I оказалась всего в десять раз выше, чем расчётная скорость работы аналитической машины.

Аналитическая машина Бэббиджа Чарльза: описание, особенности, история и свойства

Чарльз Бэббидж (1791–1871) – пионер создания вычислительной техники, который разработал 2 класса вычислительных машин – разностные и аналитические. Первый из них свое название получил благодаря математическому принципу, на котором основан – методу конечных разностей. Его красота заключается в исключительном использовании арифметического сложения без необходимости прибегать к умножению и делению, которые сложно реализовать механически.

Больше чем калькулятор

Разностная машина Бэббиджа представляет собой счетное устройство. Она оперирует числами единственным способом, на который способна, постоянно складывая их в соответствии с методом конечных разностей. Ее нельзя использовать для общих арифметических расчетов. Аналитическая же машина Бэббиджа гораздо больше, чем просто калькулятор. Она знаменует переход от механизированной арифметики к полномасштабным вычислениям общего назначения. На разных этапах эволюции идей Бэббиджа насчитывалось по меньшей мере 3 проекта. Поэтому на его аналитические машины лучше ссылаться во множественном числе.

Удобство и инженерная эффективность

Вычислительные машины Бэббиджа являются десятеричными устройствами в том смысле, что они используют 10 цифр от 0 до 9, и цифровыми потому, что оперируют только с целыми числами. Значения представлены шестернями, а каждому разряду отведено свое колесо. Если оно останавливается в промежуточном положении между целыми значениями, то результат считается неопределенным, а работа машины блокируется, чтобы показать нарушение целостности расчетов. Это является своеобразной формой обнаружения ошибок.

Бэббидж также рассматривал использование систем счисления, отличных от десятеричной, в т. ч. двоичной и с основанием 3, 4, 5, 12, 16 и 100. Он остановился на десятеричной по причине ее привычности и инженерной эффективности, поскольку благодаря ей значительно уменьшается количество движущихся частей.

Разностная машина №1

В 1821 г. Бэббидж начал разработки с механизма, предназначенного для расчета и табуляции полиномиальных функций. Автор описывает его как устройство для автоматического вычисления последовательности значений с автоматической печатью результатов в виде таблицы. Интегральной частью конструкции является принтер, механически связанный с расчетной секцией. Разностная машина №1 представляет собой первую полноценную конструкцию для автоматического выполнения расчетов.

Время от времени Бэббидж менял функциональные возможности устройства. Дизайн 1830 г. изображает машину, рассчитанную на 16 цифр и 6 порядков разности. Модель состояла из 25 тыс. частей, разделенных поровну между вычислительной секцией и принтером. Если бы устройство было построено, то весило бы, по оценкам, 4 т и имело бы высоту 2,4 м. Работа по созданию разностной машины Бэббиджа была остановлена в 1832 г., после спора с инженером Джозефом Клементом. Государственное финансирование окончательно прекратилось в 1842 г.

Аналитическая машина

Когда работа над разностным аппаратом застопорилась, в 1834 году Бэббидж задумал более амбициозное устройство, которое позже получило название аналитического универсального программируемого вычислительного механизма. Структурные свойства машины Бэббиджа во многом соответствуют основным блокам современного цифрового компьютера. Программирование производится с помощью перфокарт. Эта идея была заимствована у жаккардового ткацкого станка, где они служат для создания сложных текстильных узоров.

Логическая структура аналитической машины Бэббиджа в основном соответствует доминирующему дизайну компьютеров электронной эры, который подразумевает наличие памяти («магазина»), отделенной от центрального процессора («мельницы»), последовательное выполнение операций и средства для ввода и вывода данных и инструкций. Поэтому звание пионера вычислительной техники автор разработки получил вполне заслуженно.

Читать еще:  Где находится печка на приоре

Память и центральный процессор

У машины Бэббиджа есть «магазин», где хранятся числа и промежуточные результаты, а также отдельная «мельница», где выполнялась арифметическая обработка. Она имела набор из 4 арифметических функций и могла выполнять прямое умножение и деление. Кроме того, устройство было способно производить операции, которые теперь получили названия условного разветвления, цикла (итерации), микропрограммирования, параллельной обработки, фиксации, формирования импульсов и т. п. Сам автор такую терминологию не использовал.

ЦПУ аналитической машины Чарльза Бэббиджа, которое он называл «мельницей», обеспечивает:

  • хранение чисел, операции над которыми производятся немедленно, в регистрах;
  • имеет аппаратные средства для произведения с ними основных арифметических операций;
  • передачу ориентированных на пользователя внешних инструкций в детальное внутреннее управление;
  • систему синхронизации (такт) для выполнения инструкций в тщательно подобранной последовательности.

Механизм управления аналитической машины выполняет операции автоматически и состоит из двух частей: нижнего уровня, контролируемого массивными барабанами, называемыми бочками, и высокого уровня, использующего перфокарты, разработанными Жаккардом для ткацких станков, широко применявшихся в начале 1800-х годов.

Устройства вывода

Результат вычислений выводится различными способами, включая печать, перфокарты, построение графиков и автоматическое производство стереотипов – лотков из мягкого материала, на которых производится оттиск результата, способных служить формой для отливки пластин для печати.

Новая конструкция

Новаторскую работу над аналитической машиной Бэббидж в основном завершил к 1840 г. и начал разрабатывать новое устройство. В период с 1847 по 1849 год он закончил разработку разностной машины №2, представлявшей собой улучшенную версию оригинала. Эта модификация была рассчитана на операции с 31-разрядными числами и могла привести в табличную форму любой полином 7-го порядка. Дизайн был изящно простым и требовал лишь третью часть от количества деталей первоначальной модели, обеспечивая равную с ней вычислительную мощность.

В разностной и аналитической машинах Чарльза Бэббиджа использовалась одна и та же конструкция устройства вывода, которое не только делало распечатку на бумаге, но и автоматически создавало стереотипы и самостоятельно производило форматирование согласно заданному оператором макету страницы. При этом предусматривалась возможность настройки высоты строки, числа столбцов, ширины полей, обеспечивались автоматическое сворачивание строк или столбцов и расстановка пустых строк для удобства чтения.

Наследие

Помимо нескольких частично созданных механических сборок и тестовых моделей небольших рабочих секций, ни одна из конструкций не была реализована полностью в течение жизни Бэббиджа. Основная собранная в 1832 г. модель была 1/7 частью разностной машины №1, которая состояла примерно из 2 тыс. деталей. Она безупречно работает по сей день и является первым успешным автоматическим вычислительным устройством, которое реализует математические расчеты в механизме. Бэббидж умер, когда собиралась небольшая экспериментальная часть аналитической машины. Многие детали конструкции сохранились, как и полный архив чертежей и записок.

Проекты огромных механических вычислительных машин Бэббиджа считаются одним из потрясающих интеллектуальных достижений XIX века. Только в последние десятилетия его работа была детально изучена, и степень важности того, что он совершил, становится все более очевидной.

Аналитическая машина Бэббиджа

Кому лень читать – предлагаю сразу перейти в «Резюме».

Аналитическую машину Чарльза Бэббиджа считают первым прообразом современного компьютера. Эта машина фактически на века опередила прогресс. Однако при жизни Бэббидж её так и не создал.

Изначально Бэббидж работал над разностной машиной, предназначеной для вычисления конечных разностей путем аппроксимации функций многочленами. Работая над разностной машиной, Бэббидж пришёл к идее универсальной машины, которая смогла бы решать целый круг математических и инженерных задач. Его идея оказалась настолько оригинальной и опережающей своё время, что её реализация в задуманном виде воплотилась намного позже жизни её автора.

Разностная машина Чарльза Бэббиджа впервые позволила автоматизировать процесс вычислений и производить его в некоторой степени без вмешательства человека. В разностной машине для вычисления функций типа логарифма, тригонометрических функций и прочих, их необходимо было разбить на участки, каждый из которых представлялся своим многочленом, и только потом можно было произвести расчёт значений функции для данного участка. Переходя от одного многочлена к другому, оператор машины должен был вручную ввести все исходные значения регистров. К тому же машина позволяла производить только операцию сложения, что было не много даже по меркам 19го века. Раздумывая над этой проблемой, Бэббидж пришёл к выводу, что можно построить такую машину, которая бы сама меняла значения исходных регистров в зависимости от значения результата. То есть сама бы могла управлять процессом вычислений. В дальнейшем, развивая эту идею, Бэббидж пришёл к мысли не просто сделать машину, которая бы табулировала функцию полностью автоматически, а создать машину которая бы позволяла решать весь класс вычислительных задач. Для этого алгоритм такой машины должен быть не жёстко зашит в её конструкцию, а задаваться извне, а сама машины должна уметь выполнять все арифметические операции, а также управлять ходом выполнения вычислений. Новую вычислительную машину Бэббидж назвал Аналитической.
Основными частями Аналитической машины являлись: 1.«склад» — устройство для хранения чисел, то есть память в современной терминологии; 2.«мельница» — устройства для выполнения арифметических действий (Арифметическое устройство); 3.устройство, управляющее операциями машины; 4.устройства ввода и вывода;
Фотку можно посмотерть вот тут : http://picasaweb.google.com/lh/photo/0DfrFV_ACVYUHd8qJwzCxw?feat=embedwebsite

В такой архитектуре не сложно узреть прообраз современного компьютера с его памятью, процессором (мельница + устройство управления) и устройствами ввода вывода.
«Шину обмена» данными между АЛУ и памятью представлял собой набор зубчатых реек. Объём памяти должен был составлять тысячу чисел по 50 десятичных знаков. Для числа из 50-ти десятичных разрядов со знаком необходимо 168 бит, то есть объём ОЗУ был чуть больше двадцати килобайт. Работая над аналитической машиной, Бэббидж придумал оригинальную схему предварительного переноса. Стоит сказать, что перед этим он продумал более двадцати вариантов исполнения схемы последовательного переноса, прежде чем понял, что для кардинального ускорения процесса необходим совершенной иной принцип.
Как и в разностной машине, регистры, хранящие числа, представляли собой зубчатые колёса. Знак числа задавался отдельным зубчатым колесом. Если данное колесо отображало чётное число, то это интерпретировалось как положительный знак, иначе как отрицательный. Операции умножения и деления предполагалось реализовать как последовательные сложения или вычитания. Расчётное время выполнения операций должно было составлять одну секунду для сложения и вычитания и одну минуту для умножения и деления, что не так уж и плохо для 19го века.
Для ввода данных в память и управлением работой машины, Бэббидж задумал использовать перфокарты. На тот момент они уже существовали не один десяток лет, и были изобретены Жаккаром Жозефом-Мари для управления узором автоматизированного ткацкого станка. Аналитическая машина использовала два механизма с перфокартами — один механизм задавал операции, которые должна была выполнять мельница, второй же управлял переносом данных между «мельницей» и «складом».
В Аналитической машине была предусмотрена возможность организации условного выполнения и циклов. Для этого механизм переноса последнего разряда управлял движением перфокарт и мог заставить этот механизм повторить действие либо пропустить его.
Устройства вывода позволяли выводить на печать в результат вычислений машины в одной или двух копиях, воспроизводить в виде стереотипного отпечатка или пробивать результат на перфокартах.
Работая над аналитической машиной, Бэббидж сделал более 200 чертежей её различных узлов и около 30 вариантов компоновки машины. Однако размер замысла, и сложный характер изобретателя отсрочили рождение его изобретений на добрую сотню лет. Если взглянуть на разностную машину, которая по замыслу Бэббиджа должна был табулировать до 20-го знака функции с постоянными седьмыми разностями, то близкая по возможностям машина появилась в 1934-м году — она табулировала функции с постоянными разностями седьмого порядка и с точностью до 13 знаков.
После смерти Чарльза Бэббиджа, его сын, Генри, занялся аналитической машиной, решив сосредоточиться на двух узлах — «мельнице» и печатающем устройстве. В 1888-м году были готовы данные узла машины, которые смогли вычислить и напечатать произведение на числа натурального ряда с 29 знаками. При вычислении 32-го члена машина выдала неверный результат из-за сбоя в механизме переноса. Всю оставшуюся жизнь Генри продолжал работу над аналитической машиной отца, а также занимался популяризацией идей вычислительных машин.
Не смотря на то, что Бэббидж за свою жизнь написал немало книг и статей, он так и не создал подробного изложения принципов работы разностной и аналитической машины, так как считал создание машин более важным занятием, нежели их описание. Подробное описание разностной машины было дано Дионисием Ларднером, а аналитическая машина была описана в статье Луиджи Фредериго Менабреа. Именно эта статья и привела к тому, что на свет появилась первая в мире программа и первый программист – Ада Августа Лавлейс, дочь поэта Байрона. Чарльз Бэббидж был знаком с семьёй юной талантливой девушки и всячески поощрял её тягу к науке. Однажды Ада заинтересовалась вычислительными машинами Бэббиджа и взялась за перевод статьи Менабреа. Работая над переводом, Ада, дополнила её своими комментариями, примерами практического использования машин, а также составила «программу» вычисления чисел Бернулли.

Читать еще:  Как на фольксваген поло посмотреть температуру двигателя

Идея, родившаяся в девятнадцатом веке и ставшая реальностью в веке двадцатом, сделала переворот не только в науке, но и в нашей повседневной жизни. Жизнь Бэббиджа, история создания его вычислительных машин является ярчайшим примером того на сколько дальновидным и упорным может быть гений, и на сколько тернистым и долгим бывает путь созидания.

Резюме. Edit

Итак, аналитическая машина Бэббиджа – прототип современного компьютера. Машины должна была уметь выполнять все арифметические операции, а также управлять ходом выполнения вычислений. Поддерживались условные выполнения и циклы. Основные части Аналитической машины:

  • «склад» — устройство для хранения чисел – собственно, прообраз ОП.
  • «мельница» — устройства для выполнения арифметических действий – прообраз арифметического устройства
  • устройство, управляющее операциями машины – процессор
  • устройства ввода и вывода – устройства вывода 🙂

Машина работала на перфокартах. Объём памяти должен был составлять тысячу чисел по 50 десятичных знаков – то есть объём ОЗУ чуть больше двадцати килобайт. Первая программа для этой машины написана Адой Лавлейс (считается первой программисткой) – программа вычисления чисел Бернулли.

Аналитическая машина Чарльза Бэббиджа

Михаил Кошкин, doiid@cnt.ru
Опубликовано: 16.5.2003

В истории вычислительной техники имя Чарльза Бэббиджа занимает особое место. Он создал первую программируемую вычислительную машину, сделав попытку реализовать многие идеи, которые в XX веке найдут свое применение в вычислительной технике.

Разделение труда в работе вычислителей

Ч. Бэббидж (1791 – 1871) проявил серьезные математические способности еще в кембриджском колледже Святой Троицы, куда поступил в 1810 г. Продолжил образование он во Франции, где познакомился с великими математиками Пьером Лапласом и Жаном Батистом Фурье. Но чистая математика его не привлекла. Сильнейшее влияние на молодого математика оказал барон Гаспар де Прони, чьи работы натолкнули Бэббиджа на мысль о построении технологии вычислений.

Правительство обновленной Франции решило создать новые логарифмические и тригонометрические таблицы. Эту работу и поручили барону де Прони, руководившему в ту пору Бюро переписи.

Де Прони перенес идею разделения труда на вычислительный процесс. Он распределил исполнителей по трем уровням квалификации: высшую ступень занимали несколько выдающихся математиков, среди которых были Лежандр и Лазар Никола Карно, — они готовили математическое обеспечение. На втором уровне стояли образованные «технологи», которые организовывали рутинный процесс вычислительных работ. Последними в этой структуре были вычислители — computers (первое использование этого слова): их квалификационный максимум — умение складывать и вычитать (обычно вычислителей набирали из девушек легкого поведения, которые после революции решились сменить профессию).

Заслуга де Прони в том, что он нашел алгоритмический и технологический подходы для сведения сложных вычислений к рутинным операциям, не требующим от большинства исполнителей творческого подхода. В принципе, де Прони создал первую вычислительную машину, где в качестве процессора использовались вычислители. Этот подход 150 лет успешно применялся при проведении сложных и даже очень сложных расчетов — от разработки конструкций кораблей до создания первых атомных бомб.

Распределение вычислительного труда у де Прони наводит Бэббиджа на мысль о замене человека-вычислителя (который неизбежно ошибается) машиной — которой, как полагал Бэббидж, ошибки неведомы.

Первая попытка создания вычислительной машины (Difference Engine), построенной на принципе счета «конечных разностей», окончилась неудачей. С середины 1830-х годов Бэббидж работает над созданием программируемой машины — Analytical Engine, что и становится делом всей его жизни. То была первая машина, управляемая внешней программой.
Новая машина отличалась от арифмометра наличием регистров. В них сохранялся промежуточный результат вычисления, и с их же помощью выполнялись действия, предписанные «программой». Вычислительные возможности, открывшиеся с изобретением регистров, поразили самого автора: «Шесть месяцев я составлял проект машины, более совершенной, чем первая. Я сам поражен той вычислительной мощностью, которой она будет обладать; еще год назад я не смог бы в это поверить».

Архитектура Analytical Engine уже практически соответствует современным ЭВМ. В ней присутствуют все три классических составляющих компьютера: control barrel — управляющий барабан (управляющее устройство — УУ), store — хранилище (теперь мы называем это памятью — ЗУ) и mill — мельница (арифметическое устройство — АУ). Регистровая память машины Бэббиджа была способна хранить как минимум сто десятичных чисел по 40 знаков, теоретически же могла быть расширена до тысячи 50-разрядных (для сравнения укажем, что ЗУ одной из первых ЭВМ «Эниак» в 1945 г. сохраняло всего 20 десятиразрядных чисел). АУ имело, как мы бы сейчас сказали, аппаратную поддержку всех четырех действий арифметики. Машина производила сложение за 3 секунды, умножение и деление — за 2 минуты. Эта «мельница» состояла из трех основных регистров: два для операндов, а третий для результатов действий, относящихся к умножению. Имелись также таблица для хранения промежуточных результатов и счетчик числа итераций. Основная программа заносилась на барабан (УУ), в дополнение к ней могли использоваться перфокарты, предложенные Жозефом Мари Жаккаром еще в 1801 г. для быстрого перехода с узора на узор в ткацких станках.

На вход машины должны были поступать два потока перфокарт, которые Бэббидж назвал operation card (операционными картами) и variable card (картами переменных): первые управляли процессом обработки данных, которые были записаны на вторых. Информация заносилась на перфокарты путем пробивки отверстий. Из операционных карт можно было составить библиотеку функций. Помимо этого, Analytical Engine, по замыслу автора, должна была содержать устройство печати и устройство вывода результатов на перфокарты для последующего использования. Так что Бэббидж стал пионером идеи ввода-вывода.

Analytical Engine так и не была реализована. Изобретатель писал в 1851 г.: «Все разработки, связанные с Analytical Engine, выполнены за мой счет. Я провел целый ряд экспериментов и дошел до черты, за которой моих возможностей не хватает. В связи с этим я вынужден отказаться от дальнейшей работы».

Почему все так плохо кончилось

Так почему же хотя бы одна аналитическая машина так и не была изготовлена Бэббиджем, хотя еще при его жизни было построено несколько действующих экземпляров других конструкторов (конечно, гораздо более простых)? Кроме хронической нехватки финансовых средств, важнейшая из причин — технологическая. Тогда не умели обрабатывать металл с высокой степенью точности и с высокой производительностью — а для реализации проекта требовались тысячи одних только зубчатых колес. И в наши дни технологи бы сильно призадумались над возможностью постройки подобной железки — а в те времена самому Бэббиджу нередко приходилось изобретать технологии производства деталей, отвлекаясь от общего направления проекта. В целом он сделал более 200 чертежей различных узлов и около 30 вариантов общей компоновки машины. Может быть, неудача постигла ученого еще и потому, что Бэббидж был слишком увлечен самой проблемой и не смог вовремя поставить самому себе разумные границы.

Читать еще:  Какой аккумулятор на ваз 2107

В 1864 году он составил научный прогноз: «Пройдет, вероятно, полстолетья, прежде чем люди убедятся, что без тех средств, которые я оставляю после себя, нельзя будет обойтись». Он ошибся на 30 лет: в начале сороковых годов XX века. Говард Айкен построил машину Mark I, о которой говорил как об «осуществленной мечте Бэббиджа». Производительность Mark I всего в десять раз превышала расчетную скорость Analytical Engine.

Реализация проекта благодарными потомками

Большое влияние на посмертную судьбу машин оказал генерал Бэббидж, сын изобретателя. Выйдя в отставку в 1874 году, он несколько лет посвятил изучению отцовского наследия, а в 1880 году начал работу по восстановлению Difference Engine в «железе». Работа продолжалась с переменным успехом до 1896 г. В конце концов к 1904 году был создан небольшой фрагмент машины, который печатал результаты вычислений. Кроме того, Бэббидж-младший сделал несколько мини-копий Difference Engine и разослал их по всему миру.

В 1991 году, к двухсотлетию со дня рождения ученого, сотрудники лондонского Музея науки воссоздали по его чертежам 2,6-тонную «разностную машину № 2», а в 2000 году — еще и 3,5-тонный принтер Бэббиджа. Оба устройства, изготовленные по технологиям середины XIX века, превосходно работают — в расчётах Бэббиджа было найдено всего две ошибки.

Машина Бэббиджа

То, что сейчас будет сказано, вероятно, многим покажется неправдоподобным. Но как это ни удивительно, факт остается фактом: универсальная автоматическая машина, в структуру которой уже входили почти все основные части современных ЭВМ, была изобретена еще в тридцатых годах XIX века. И сейчас мы можем лишь поражаться, что такая гигантская работа, – а это был, без преувеличений, переворот в вычислительной технике – могла быть совершена практически одним человеком.

Имя этого человека, которому суждено было открыть новую и, пожалуй, наиболее яркую страницу в истории вычислительной техники – Чарльз Бэббидж. За свою долгую жизнь (1792-1871) кембриджский профессор математики сделал немало открытий и изобретений, значительно опередивших его время. Круг интересов Бэббиджа был чрезвычайно широк, и все же главным делом его жизни, по словам самого ученого, были вычислительные машины, над созданием которых он работал около 50 лет.

Разностная машина Бэббиджа – это, конечно, шаг вперед по сравнению с простыми суммирующими устройствами, но и она обладала ограниченными возможностями. Пользуясь современной терминологией, можно сказать, что она представляла собой устройство с фиксированной программой действий. Чтобы перейти от вычисления одной функции к другой, необходимо вмешательство человека: он должен ввести в регистры машины новые исходные данные. Эту операцию Бэббидж пытался автоматизировать, но к тому времени у него возникла идея создания другой, более совершенной машины.

И вот в 1833 г., приостановив работы над разностной машиной, Бэббидж начал осуществлять проект универсальной автоматической машины для любых вычислений. Это устройство, обеспечивающее автоматическое выполнение заданной программы вычислений, он назвал аналитической машиной.

Аналитическая машина, которую сам изобретатель, а затем его сын, строили с перерывами в течение 70 лет, так и не была построена. Изобретение это настолько опередило свое время, что идеи, заложенные в нем, удалось реализовать лишь в середине XX века в современных ЭВМ. Но какое удовлетворение испытал бы этот замечательный ученый, узнав, что структура вновь изобретенных почти через столетие универсальных вычислительных машин, по существу, повторяет структуру его аналитической машины.

Аналитическая машина Бэббиджа представляла собой единый комплекс специализированных блоков. По проекту она включала следующие устройства. Первое – устройство для хранения исходных данных и промежуточных результатов. Бэббидж назвал его “складом”; в современных вычислительных машинах устройство такого типа называется памятью или запоминающим устройством.

Для хранения чисел Бэббидж предложил использовать набор десятичных счетных колес. Каждое из колес могло останавливаться в одном из десяти положений и таким образом запоминать один десятичный знак. Колеса собирались в регистры для хранения многоразрядных десятичных чисел. По замыслу автора запоминающее устройство должно было иметь емкость в 1000 чисел по 50 десятичных знаков “для того, чтобы иметь некоторый запас по отношению к наибольшему числу, которое может потребоваться”. Для сравнения скажем, что запоминающее устройство одной из первых ЭВМ имело объем 250 десятиразрядных чисел.

Для создания памяти, где хранилась информация, Бэббидж использовал не только колесные регистры, но и большие металлические диски с отверстиями. В памяти на дисках хранились таблицы значений специальных функций, которые использовались в процессе вычислений.

Второе устройство машины – устройство, в котором осуществлялись необходимые операции над числами, взятыми из “склада”. Бэббидж назвал его “фабрикой”, а сейчас подобное устройство называется арифметическим. Время на производство арифметических операций оценивалось автором: сложение и вычитание – 1с; умножение 50-разрядных чисел – 1 мин; деление 100-разрядного числа на 50-разрядное – 1 мин.

И наконец, третье устройство машины – устройство, управляющее последовательностью операций, выполняемых над числами. Бэббидж назвал его “конторой”; сейчас оно – устройство управления.

Управление вычислительным процессом должно было осуществляться с помощью перфокарт – набором картонных карточек с разным расположением пробитых (перфорированных) отверстий. Карты проходили под щупами, а они, в свою очередь, попадая в отверстия, приводили в движение механизмы, с помощью которых числа передавались со “склада” на “фабрику”. Результат машина отправляла обратно на “склад”. С помощью перфокарт предполагалось также осуществлять операции ввода числовой информации и вывода полученных результатов. По сути дела, этим решалась проблема создания автоматической вычислительной машины с программным управлением.

В 1843 г. Адой Лавлейс для машины Бэббиджа была написана первая в мире достаточно сложная программа вычисления чисел Бернулли. Однако ее основная заслуга состоит не только в создании программы, но и в полном и доступном описании машины, а также анализе ее возможностей для решения различных вычислительных задач. Наряду с этим, Лавлейс проводила широкую популяризацию идей Бэббиджа, сама проектировала некоторые узлы машины и исследовала вопросы применения двоичной системы счисления, а также высказывает ряд идей, получивших широкое применение только в наше время.

Проект аналитической машины не был реализован, но получил весьма широкую известность и заслужил высокую оценку целого ряда ученых, в первую очередь, математиков. Механические устройства оказались попросту непригодными для осуществления такого грандиозного для того времени плана. Разве могла механика с ее трущимися шестернями и неповоротливыми рычагами воплотить красивейшие схемы, которые спустя десятилетия оказались под силу лишь электронным элементам?

Только после смерти Бэббиджа его сын Генри сумел построить по чертежам отца центральный узел “Аналитической машины” – арифметическое устройство, которое в 1888 году вычислило произведения числа “пи” на числа натурального ряда от одного до 32 с точностью до 29 знаков! Машина Бэббиджа оказалась работоспособной, но Чарльз этого уже не увидел.

Ссылка на основную публикацию
Adblock
detector